We are connecting ever more things to the internet.

October 21, 2021

Moving tasks to the virtual world means an increasing demand for electricity. This poses a significant challenge to many nations across the world as they attempt to drastically reduce emissions.

As data generation increases exponentially year over year, driven by data hungry AI and connected smart devices, so does the need for systems to process and store that information. Data centers are power-hungry and every percentage point in efficiency gained means a huge impact economically and ecologically.

Attending Semicon Taiwan’s Power and Opto Semiconductor Week (held in September) we learnt that solutions are emerging and evolution is underway. What if semiconductors could be the key to solve power challenges ?

One such evolution is the move to compound, wide-bandgap (WBG) semiconductor chemistries for power electronics. These next generation semiconductors can provide a step up in efficient power usage for a wide range of applications, including for data centers.

The Power and Opto Semiconductor Week had a fully packed schedule of knowledgeable presenters teaching about the drivers, benefits and opportunities of next generation of Power Semiconductors.

Handle the many Zettabytes

To be able to handle the huge amount of data generated, data centers will need to install thousands of additional sever racks each using a significant amount of power. That is why power is a major cost factor for data centers. Using GaN based power semiconductors in the various power applications of a data center has the potential to increase the overall power efficiency of the system, thereby decreasing costs while at the same time benefiting from a smaller form factor.

According to Mr. Stephen Coates from GaN Systems Inc. using GaN-based power supplies can increase profit by $3M per year per 10 server Rack.

Figure: GaN Power Systems Inc. Potential power efficiency gains by using GAN over Silicon

SiC and GaN: breaking through the physical limits of traditional Silicon

Traditional silicon-based Semiconductors have been the foundation of the semiconductor industries’ tremendous technological advancements for decades and are likely to play a major role for many years to come. However, in the field of power electronics Silicon is reaching its physical limits.

New types of chemistries are required to satisfy the ever-increasing requirements. Compound Semiconductors with wide-bandgaps (WBG) offer a solution because they have important characteristics such as lower on-resistance, higher breakdown voltages and higher switching frequencies.

Of these compound semiconductors, the two most promising in use already today are Silicon-Carbide (SiC) and Gallium-Nitride (GaN) based devices. They offer benefits over Silicon in most metrics power electronics care about. 

However, compared to Silicon, SiC and GaN are more expensive to manufacture. SiC and GaN are only now making the transition to 200mm wafers while Silicon devices have been manufactured on 300mm wafers for years. GaN and SiC devices also still face several manufacturing challenges, such as moving to vertical designs, doping or low etching speeds.

Nevertheless, GaN and SiC have proven to be able to provide astounding benefits over traditional silicon. As the demand drivers continue to scale, so will SiC and GaN.

Source: Ming Su & Mitch Van Ochten: Solving the Challenges of Driving SiC MOSFETs https://www.eetimes.com/solving-the-challenges-of-driving-sic-mosfets/#

Our outlook

GaN and SiC are one example of how the semiconductor industry is providing solutions to problems facing our society. Wide spread adoption of WBG devices for power applications will help companies and communities achieve their climate goals.

There are many initiatives on-going to tackle the power challenges. It's therefore important for the entire supply chain — especially the semiconductor industry, as the backbone of our digital world — to continue its drive for efficiency through technological innovation and ensure fast implementation for a reliable manufacturing.

Latest Posts

Hamburg’s new look: Where collaboration meets creativity

January 23, 2025

A workplace isn’t just where we work – it’s where ideas are born, connections are made, and innovation takes shape. In Hamburg, Comet’s team recently completed a transformation of their office space, turning it into a vibrant and flexible environment tailored to their unique needs. The results? A dynamic workplace that fosters collaboration, creativity, and productivity.

Read more

Comet’s 20 Under 30 winners at Semicon Europa: Shaping the future of innovation

January 22, 2025

We couldn’t be prouder: Two of our own rising talents have been recognized with the prestigious Semicon Europa 20 Under 30 Award. Abel Andemichael and Pascal Fasel are driving innovation and setting an example for the next generation of leaders in the semiconductor industry. Their career journeys, passion, and dedication are inspiring proof of what’s possible when curiosity meets opportunity. Watch the video to hear their unique insights.

Read more

The Japan assignment: Unleashing the power of people.

January 14, 2025

At Comet, we're all about growth and innovation - not just for our business, but especially for our employees. One of the ways we cultivate this endeavour is through international assignments, where colleagues can explore new territories and work with teams in other locations or countries. Our latest story draws us to the world of Comet Yokohama, Japan, where Catherine MacGillivray-Prantl, our Global Head of Talent Management & Culture, took on the challenge of a 6-month assignment as Country Manager ad interim.

Read more