We are connecting ever more things to the internet.

October 21, 2021

Moving tasks to the virtual world means an increasing demand for electricity. This poses a significant challenge to many nations across the world as they attempt to drastically reduce emissions.

As data generation increases exponentially year over year, driven by data hungry AI and connected smart devices, so does the need for systems to process and store that information. Data centers are power-hungry and every percentage point in efficiency gained means a huge impact economically and ecologically.

Attending Semicon Taiwan’s Power and Opto Semiconductor Week (held in September) we learnt that solutions are emerging and evolution is underway. What if semiconductors could be the key to solve power challenges ?

One such evolution is the move to compound, wide-bandgap (WBG) semiconductor chemistries for power electronics. These next generation semiconductors can provide a step up in efficient power usage for a wide range of applications, including for data centers.

The Power and Opto Semiconductor Week had a fully packed schedule of knowledgeable presenters teaching about the drivers, benefits and opportunities of next generation of Power Semiconductors.

Handle the many Zettabytes

To be able to handle the huge amount of data generated, data centers will need to install thousands of additional sever racks each using a significant amount of power. That is why power is a major cost factor for data centers. Using GaN based power semiconductors in the various power applications of a data center has the potential to increase the overall power efficiency of the system, thereby decreasing costs while at the same time benefiting from a smaller form factor.

According to Mr. Stephen Coates from GaN Systems Inc. using GaN-based power supplies can increase profit by $3M per year per 10 server Rack.

Figure: GaN Power Systems Inc. Potential power efficiency gains by using GAN over Silicon

SiC and GaN: breaking through the physical limits of traditional Silicon

Traditional silicon-based Semiconductors have been the foundation of the semiconductor industries’ tremendous technological advancements for decades and are likely to play a major role for many years to come. However, in the field of power electronics Silicon is reaching its physical limits.

New types of chemistries are required to satisfy the ever-increasing requirements. Compound Semiconductors with wide-bandgaps (WBG) offer a solution because they have important characteristics such as lower on-resistance, higher breakdown voltages and higher switching frequencies.

Of these compound semiconductors, the two most promising in use already today are Silicon-Carbide (SiC) and Gallium-Nitride (GaN) based devices. They offer benefits over Silicon in most metrics power electronics care about. 

However, compared to Silicon, SiC and GaN are more expensive to manufacture. SiC and GaN are only now making the transition to 200mm wafers while Silicon devices have been manufactured on 300mm wafers for years. GaN and SiC devices also still face several manufacturing challenges, such as moving to vertical designs, doping or low etching speeds.

Nevertheless, GaN and SiC have proven to be able to provide astounding benefits over traditional silicon. As the demand drivers continue to scale, so will SiC and GaN.

Source: Ming Su & Mitch Van Ochten: Solving the Challenges of Driving SiC MOSFETs https://www.eetimes.com/solving-the-challenges-of-driving-sic-mosfets/#

Our outlook

GaN and SiC are one example of how the semiconductor industry is providing solutions to problems facing our society. Wide spread adoption of WBG devices for power applications will help companies and communities achieve their climate goals.

There are many initiatives on-going to tackle the power challenges. It's therefore important for the entire supply chain — especially the semiconductor industry, as the backbone of our digital world — to continue its drive for efficiency through technological innovation and ensure fast implementation for a reliable manufacturing.

Latest Posts

Preparing for the future. That was Semicon West 2024.

July 16, 2024

Reflecting on Semicon West 2024, we are thrilled by the incredible experiences and connections made over the past few days. Our team was on-site to meet with valued partners and discuss how cutting-edge technology can support future front-end and back-end semiconductor manufacturing processes. We believe that preparing for the future also means investing in people. That's why we conducted many activities in parallel to prepare the workforce of tomorrow and demonstrated our commitment to the future in a broader sense. Read on for our key takeaways.

Read more

Result of the ESG initiative «100 ideas to tackle climate change»

July 09, 2024

As a part of Comet's ESG initiative Ā«100 ideas to tackle climate changeĀ», one of our employees suggested removing invasive neophytes from the area surrounding the Comet building in Flamatt. We took this opportunity to actively support our local environment and worked with Comet volunteers to uproot invasive neophytes after work.

Read more

ECO portable X-ray system wins Red Dot Design Award

June 27, 2024

Our ECO Series portable X-ray systems have won the prestigious Red Dot Design Award for Product Design. This award recognizes not only the stunning design of our newest product range, but also its functionality and innovation. Want to know how we achieved this incredible success? Keep reading to discover how our international and cross-functional collaboration led to this amazing achievement.

Read more